Search results for "polarized target: transverse"
showing 3 items of 3 documents
First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process
2017
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $\pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic sc…
Sivers asymmetry extracted in SIDIS at the hard scales of the Drell-Yan process at COMPASS
2017
Proton transverse-spin azimuthal asymmetries are extracted from the COMPASS 2010 semi-inclusive hadron measurements in deep inelastic muon-nucleon scattering in those four regions of the photon virtuality $Q^2$, which correspond to the four regions of the di-muon mass $\sqrt{Q^2}$ used in the ongoing analysis of the COMPASS Drell-Yan measurements. This allows for a future direct comparison of the nucleon transverse-momentum-dependent parton distribution functions extracted from these two alternative measurements. Various two-dimensional kinematic dependences are presented for the azimuthal asymmetries induced by the Sivers transverse-momentum-dependent parton distribution function. The inte…
First measurement of the Sivers asymmetry for gluons using SIDIS data
2017
The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers asymmetry for gluons in the same process is presented. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simul…